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Abstract 
 

               We demonstrate that the use of a space-time transformation in path integral can simplify 
the calculation of the propagator for a harmonic oscillator with time-dependent mass and frequency. 
We show that such a propagator can be easily obtained from the unit mass and frequency propagator 
in the new space-time coordinate systems. Two cases of harmonic oscillator with time-dependent 
mass, which exact propagator can be evaluated, are investigated. 
 

Introduction 
          The Feynman path integral formulation 
of quantum mechanics provides an approach to 
solve quantum mechanical problems, 
alternative to the well-known formulations of 
Heisenberg and Schrodinger. The application of 
this method has been limited because explicit 
expressions for propagator are available only a 
few cases.  
           Recently there has been considerable 
interest in investigating the theory of time-
dependent Hamiltonian systems using various 
methods. [1-5] Various application in many areas 
of physics, such as quantum optics, cosmology, 
and nanotechnology are the main reasons for 
intensive study. S. Pepore and et.al. [6-8] 
applied both Feynman path integral and 
Schwinger method to study the propagator and 
wave function for  a harmonic oscillator with 
time-dependent mass and frequency.  

The aim of this paper is to derive the 
propagator for a harmonic oscillator with time-
dependent mass and frequency as described by 
the Hamiltonian 
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where )(tm and )(t are the time-dependent 
mass and frequency, respectively.  
        Our method is not based on the direct 
calculating of path integration, but based on the 
using of a space-time transformation to simplify 
the path integration. We also present two more 
exactly solvable cases of harmonic oscillators with 
time-dependent mass and constant frequency: 
 

1. A damping mass obeying 

  
rtmetm )(   

2. A strongly pulsating mass according 

to tmtm 2cos)(  . 
 



96  วารสารวิชาการมหาวิทยาลยัธนบุรี 
 

We have calculated exact closed from 
expressions for the propagators for these two 
cases. 
 

The Space-Time Transformation in Path Integration 
for a Harmonic Oscillator with Time–Dependent 
Mass and Frequency 
 

         The dynamics of a harmonic oscillator 
with time-dependent mass and frequency can 
be described by the Lagrangian [6] as  
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where )(tm is the time-dependent mass and 
)(t  is the time-dependent frequency. By 

using the Euler-Lagrange equation for the 
Lagrangian in Eq.(1), the equation of motion can 
be written as 
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where we define .)()( tmt   
          

By using the Pinney equation [9] 
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the Lagrangian in Eq.(1) can be modified to 
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where 0L  is 
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          The next step is trying to find a 
transformation that can transform the system 

with Lagrangian 0L  in Eq. (5) into the harmonic 
oscillator with unit mass and frequency. Let us 
consider the following transformation, [10] 
which is the space and time transformation,  
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By using space and time transformation, the 
Lagrangian 0L  in Eq. (5) can be written as  
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           The Feynman propagator 
),;,( txtxK   is defined as the path integral 

[11] 
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where Dx(t) is the path differential measure 
indicating that integrations are over all possible 
paths beginning at xtx )(  and terminating 
at  
 

xtx )( . 
 

        By substituting the Lagrangian in Eq. (4) 
into Eq. (9), the propagator can be expressed as 
 

    
,

2
exp),;,( 22

0



























 x

m
x

mi
KtxtxK







 



 

(10)                      
 

where 0K  is the new propagator corresponding 
to the new Lagrangian 
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If we now introduce a new time   in Eq.(7) 
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the action integral in Eq. (11) takes the form 
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where 0L  is the unit mass and frequency 
oscillator Lagrangian in Eq. (8). 
             Using a process similar to Lawande and 
Dhara, [10] the transformation of the measures 
can be expressed as 
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So, the propagator in Eq. (10) can be written as 
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where ),;,(0   yyK is the propagator for a 
harmonic oscillator with unit mass and 
frequency described by [11] 
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        Substituting Eq. (16) into Eq.(15), the result is 
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The final step is rewriting Eq. (17) into the 
original variables as 
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          This result is agree with the result of 
S.Pepore and B.Sukbot by using of the 
Schwinger method. [7]  
 

The Caldirola-Kanai Oscillator 
           In this section, the application of the 
solution of our auxiliary Eq. (3) and (7) is 
demonstrated to derive the exact propagator. 
The system selectedas an example is the 
damped harmonic oscillator or the Caldirola-
Kanai oscillator. [12-13] 
         The time-dependent mass for a damped 
harmonic oscillator can be written as 
 

                 rtmetm )( ,     (19)                                                       
 

where m is the constant mass and r  is the 
constant damping coefficient. The Caldirola-
Kanai Lagrangian can be obtained by the 
Lagrangian in Eq. (1) with constant frequency   
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         In order to obtain the propagator of the 
system, the explicit forms of the functions )(t
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in Eq.(3) and )(t in Eq.(12) have to be solved. 
By substituting the time-dependent mass in 
Eq.(19) into the Pinney equation Eq. (3) and Eq. 
(12), it can be derived that 
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where  is the reduced frequency defined by 
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         By substituting Eqs. (19), (21) and (22) into 
Eq. (18), the propagator for the Caldirola-Kanai 
oscillator can be obtained as  
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The obtained propagator in Eq. (24) are in 

the same from as that reported by Jannusis and 
et.al. [12] 
 

The Harmonic Oscillator with Strongly 
Pulsating Mass 
 

The other well known of a time-
dependent mass oscillator is a harmonic oscillator 
with strongly pulsating mass. [14] This oscillator 
can be applied in connection with the 
electromagnetic field in a Fabry-Perot cavity in 
contact with a reservoir of resonant two-level 
atoms. The periodic release and reabsorption of 
photon can be represented by an oscillator of 

periodically fluctuating energy. In other words, it 
can be represented by a periodically varying 
mass as 
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       By substituting the mass law into the 
auxiliary Eq. (3) Eq. (12), we can get  
 

               



m

t
t




sec
)(         (27) 

and                                        
 

               tt )( ,  (28)                                                               
 

where the augmented frequency  is defined 
by 
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       By substituting Eqs.(25), (27), and (28) into 
the propagator in Eq. (18), the propagator for a 
harmonic oscillator with strongly pulsating mass 
can be derived as 
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This propagator can be simplified by 
setting 0 , and  . The result is 
reduced to the simple harmonic oscillator 
propagator. 
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Conclusion 
          In this article we have successfully 
calculated the exact propagator for a harmonic 
oscillator with time-dependent mass and 
frequency by the Feynman path integral 
method in combination with a space-time 
transformation. The resulting propagator in Eq. 
(18) is similar to  as in the report of Pepore and 
et.al. [6-8] An important step in this paper is to 
find the space and time transformation in Eq. (6) 
and Eq. (7) and to write the Lagrangian in terms 
of a unit mass and frequency oscillator in Eq. 
(8). The advantage of our method is that it can 
transform complicated system into a simplified 
problem. We have concluded here that, our 
approach is an effective method in solving the 
time-dependent problems because it only 
requires some basic integration. In section 3 and 
4, we have shown the usefulness of Pinney 
equation for deriving the explicit form of the 
propagator in the case of the Caldirola-Kanai 
and strongly pulsating mass oscillator. Finally, it 
may be suggested that the methods in this 
paper can be applied to complicated problems, 
such as a time-dependent linear potential and a 
charged harmonic oscillator in a time-
dependent electromagnetic field. 
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