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Abstract
In this paper, we show that (x,y,z) = (0,0,0) is a unique non-negative integer solution of the
Diophantine equation 3* —pY = z% where p is prime and x,y,z are non-negative integers satisfying some
conditions. For the case p = 2, we give all non-negative integer solutions of this equation.
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Introduction

Many mathematical researchers investigated the non-negative integer solutions (x,y,z)of
Diophantine equations in the form a* — bY = z2? where a and b are positive integers. In 2018, Rabago (2018)
showed that the Diophantine equation 4* — p¥ = z2, where p is prime, has the set of all non-negative integer
solutions {(x,y,2)} given by {(x,y,2)} = {(0,0,0)} U {(q — 1,1,2971 — 1)}, for prime p = 29 — 1 (with q also
a prime). For p = 3(mod 4) not of the form 27 — 1, the Diophantine equation 4* — p¥ = z?% has the only non-
negative integer solution (x,y,z) = (0,0,0). After that, in 2019, Thongnak, Chuayjan and Kaewong (2019)
proved that (x,y,z) € {(0,0,0),(1,0,1),(2,1,1)} are only three non-negative integer solutions of the
Diophantine equation 2% — 3¥ = z2.

In 2020, Burshtein (2020) proved that the Diophantine equation 13* — 5¥ = z2 has a unique positive
integer solution (x,v,z) = (2,2,12) and the Diophantine equation 19* —5Y = z% has no positive integer
solution. Recently, Thongnak, Chuayjan and Kaewong (2021, 2022) proved that (x,y,z) = (0,0,0) is the
unique non-negative integer solution of the Diophantine equations 7* — 5¥ = z2 and 7* — 2¥ = z2. In 2022,

Tadee (2022) found all positive integer solutions of the Diophantine equation p?* — g2’ = z? where p and q
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are primes. Furthermore, Tadee and Laomalaw (2022) studied non-negative integer solutions of the
Diophantine equation 2* — p¥ = z% where p is prime.
In this paper, we study non-negative integer solutions of the Diophantine equation 3* —p¥ = z2

where p is prime and x, y, z are non-negative integers with some conditions.

Preliminaries
In this section, we give some helpful Theorems and Lemmas for this study.
Theorem 1. (Mihailescu’s Theorem) (Mihailescu, 2004) The Diophantine equation a® —bY =1 has a unique

integer solution (a, b, x,y) = (3,2,2,3) where a, b, x,y are integers and min{a, b, x,y} > 1.

Theorem 2. (Tadee & Laomalaw, 2022) Let n be a positive integer with n # 1. Then the Diophantine

equation n* —n¥ = z?2 has all non-negative integer solutions in the following form
(x,y,2) € {(r, 1,0), (1, 0,vn— 1), (r +1,r,(n— 1)nr)} n7z3,

where r is a non-negative integer.

By Theorem 2, we have the following corollary for case n = 3.

Corollary 3. The Diophantine equation 3* — 3¥ = z2 has all non-negative integer solutions in the following
form (x,y,2) € {(r,,0):7 € N U {0}}.

Lemma 4. Let p be prime. Then the Diophantine equation 1 —p¥ = z2 has a unique non-negative integer
solution (y, z) = (0,0).
Proof. Let y and z be non-negative integers such that 1 —p¥ = z2. Since z% > 0, we have 1 —pY > 0. This

implies that y=0 and z=0.
|

Lemma 5. The Diophantine equation 3* — 1 = z2 has a unique non-negative integer solution (x,z) = (0,0).
Proof. Let x and z be non-negative integers such that 3* — 1 = z2. If x = 0, then z2 = 0. It follows that
(x,z) = (0,0). If x =1, then we have z? =2 which is impossible. Assume that x > 1. We consider the
following cases.

Case 1.z = 0. Then 3* = 1. We get x = 0. This is impossible since x > 1.

Case 2. z = 1. Then 3* = 2. This is impossible since x is an integer.

Case 3. z>1. Then min{3,zx,2} > 1. This is impossible since 3* —2z2=1 and Theorem 1.
|

Lemma 6. Let p be prime and x be an even integer. If the Diophantine equation 3* —pY = z2 has a non-
negative integer solution, then there exists a non-negative integer u such that 2 - 37 = p*(pY ™+ 1).

Proof. Let x,y and z be non-negative integers such that 3* — p¥ = z2. Since x is an even integer, there exists
a non-negative integer k such that x = 2k. Then (3% — 2)(3% + z) = p¥. Since p is prime, there exists a non-

negative integer u such that 3% —z =p* and 3% +z =pY % Thus, y =2u and 2-3F = p%(p¥~2* + 1).
|
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Corollary 7. Let p € {2,3} be prime and x be an even integer. Then all non-negative integer solutions of the

Diophantine equation 3* — p¥ = z?2 are
(x,7,2) € {(Zk, log,(2 - 3¢ — 1),3% —1):k, log,(2-3* = 1) e N U {0}}.

Proof. Let x,y and z be non-negative integers such that 3* — p¥ = z2. Since x is an even integer, there exists
a non-negative integer k such that x = 2k. By Lemma 6, there exists a non-negative integer u such that
2-3F=p¥(pY 2% +1). Since p &{2,3} is prime, we obtain that u=0. Then 2-:3% =pY +1. Thus,
y = log,(2:3¥—1) and z? =3* —p¥ =32k —2-3% + 1 = (3K — 1)2. This implies that z = 3% — 1. Then

(x,y,2z) = (2k, log,(2-3¥—1),3k —1)  where log,(2:3¥*—1) is a non-negative integer.
|

Corollary 8. The Diophantine equation 81* — 5¥ = z2 has a unique non-negative integer solution (x,y,z) =
(0,0,0).

Proof. Let x,y and z be non-negative integers such that 3** — 5¥ = z2, Assume that y > 1. Since 4x is an
even integer and Lemma 6, there exists a non-negative integer u such that 2 - 9% = 5%(5Y72% 4+ 1). Then u =
0 and 2-9* =5Y 4+ 1. Since 5 + 1 = 1(mod 5), we get 2-9* = 1(mod 5). This is impossible since 2-9* =

2-(-1)*=-2 or2(mod5). Thus, y=0. By Lemma 5 we have (x,y2) =(0,00).
|

Main Results

We now present our main results.
Theorem 9. Let p be prime with p = 1(mod 3). Then the Diophantine equation 3* —p¥ = z? has a unique
non-negative integer solution (x,y,z) = (0,0, 0).
Proof. Let x,y and z be non-negative integers such that 3*¥ — p¥ = z%. Assume that x = 1. Then 3* =
0(mod 3). Since p =1(mod3), we obtain that 3* —pY = —1(mod 3). Then z? = —1(mod 3), which

contradicts the fact that z2 =0 or 1(mod3). Thus, x = 0. By Lemma 4, we have (x,y,z) = (0,0,0).
|

Theorem 10. Let p be prime with p = 2(mod 3) and y be an even integer. Then the Diophantine equation
3* — p¥ = z? has a unique non-negative integer solution(x, y,z) = (0,0, 0).

Proof. Let x,y and z be non-negative integers such that 3* —p¥ = z2. If x = 1, then 3* = 0(mod 3). Since
p = 2(mod 3) and y is even, we get 3* —p¥ = 0 — (—1)¥ = —1(mod 3). This implies that z? = —1(mod 3),

which contradicts the fact that z2 = 0 or 1(mod 3). Thus x = 0. By Lemma 4, we have (x,y,z) = (0,0,0).
|

Corollary 11. Let p be prime with p = 29(mod 60). Then the Diophantine equation 3* —pY = z?2 has a
unique non-negative integer solution (x,y,z) = (0,0, 0).

Proof. Let x,y and z be non-negative integers such that 3* — p¥ = z2. Since p = 29(mod 60), we have p =
2(mod 3), p = 1(mod 4) and p = —1(mod 5). Assume that y is odd. Since p = 1(mod 4), we get z = 3% —
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pY = (=1)* — 1(mod 4). Since p is odd, we have 3* — p¥ is even. Thus, z is also even. Then z? = 0(mod 4).
This implies that (—1)* — 1 = 0(mod 4). Then x is even. By Lemma 6, there exists a non-negative integer u
such that 2 - 3§ = p*(p¥~% + 1). Since p is prime with p = 29(mod 60), we have u =0 and 2 - 3§ =p’+1
Since p=—1(mod5) and y is odd, we have p¥ +1=0(mod5). Then 2- 3§ = 0(mod 5). This is a

contradiction. Thus, y is even. Since p =2(mod3) and Theorem 10, we have (x,y,z) = (0,0,0).
|

Theorem 12. Let p be prime with p = 5(mod 12). If there exists a prime q € {2, 3} such that p = —1(mod q),
then the Diophantine equation 3* — p¥ = z?2 has a unique non-negative integer solution (x,y,z) = (0,0, 0).

Proof. Let x,y and z be non-negative integers such that 3* — p¥ = z2. Since p = 5(mod 12), we have p =
2(mod 3) and p = 1(mod 4). Assume that y is odd. Since p = 1(mod 4), we have z? = 3* —p¥ = (—-1)* —
1(mod 4). Since p is odd, we obtain that 3* — p¥ is even. Thus, z is even and z2 = 0(mod 4). It follows that
(=1)* — 1 = 0(mod 4). Then x is even. By Lemma 6, there exists a non-negative integer u such that 2 - 3; =
p*(pY~?* + 1). Since p is prime with p = 5(mod 12), we get u = 0 and 2 - 3§ =pY + 1. Since p = —1(mod q)
and y is odd, we have p¥ +1 = 0(mod q). Thus, 2- 3§ = 0(mod q). This is impossible since q € {2,3} is

prime. Thus, y is even. Since p=2(mod3) and Theorem 10, we get (x,y,2z)=1(0,0,0).
|

Corollary 13. The Diophantine equation 3* — 41 = z% has a unique non-negative integer solution (x,y,z) =
(0,0,0).
Proof. Since 41 is prime, 41 = 5(mod 12) and 41 = —1(mod 7), we obtain that the Diophantine equation

3* —41Y =z? has a unique non-negative integer solution (x,y,z) =(0,0,0), by Theorem 12.
|

Theorem 14. Let p be prime with p = 11(mod 12) and x be an even integer. Then the Diophantine equation
3* — p¥ = z? has a unique non-negative integer solution (x,y,z) = (0,0,0).

Proof. Let x,y and z be non-negative integers such that 3* — p¥ = z2. Since x is even and Lemma 6, there
exists a non-negative integer u such that 2 - 35 = p“(p¥~** + 1). Since p is prime with p = 11(mod 12), we
get u=0 and 2- 3§ =pY +1. Since p=-1(mod4), we have p¥+1=(—1)Y + 1(mod 4). Since 3 =
—1(mod 4), we have 2- 3§ =2(—1)*= -2 or 2(mod 4). Thus, (—1)¥ +1 = -2 or 2(mod 4). Then y is

even. Since p = 2(mod 3) and Theorem 10, we get (x,v,2) = (0,0,0).
|

Theorem 15. The Diophantine equation 3* — 2¥ = z2 has all non-negative integer solutions in the following
form (x,,2) € {(0,0,0),(2,3,1), (4,57} u{(r,1,v3" = 2):r,v/37 =2 € N}.

Proof. Let x,y and z be non-negative integers such that 3* — 2¥ = z2. If y = 0, then by Lemma 5, we have
(x,y,2) = (0,0,0). If y = 1, then z = v/3* — 2. This implies that (x,y,z) € {(r,1,v/3" — 2):r,V3" =2 € N}. If
y > 1, then we get x > 1 and 3* — 2¥ = (=1)*(mod 4). Thus, z? = (—1)*(mod 4). Since 3* — 2¥ is odd, we
have z?2 is also odd. Then z2 = 1(mod 4). Thus, (—1)* = 1(mod 4). Then x is even. By Lemma 6, there exists
a non-negative integer u such that 2 - 35 = 2¥(2Y72" +1). Then u = 1 and 3 =272 4 1.

Case 1.x =2.Then 2Y"2 =2 Thus,y =3 and z = 1. That is (x,y,2) = (2,3,1).
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Case 2. x = 4. If y =2, then 32 =2. This is impossible. If y =3, then 32 =3 and x = 2. This is also
impossible. Thus, y = 4. Then min {S,Z,E,y — 2} > 1. Since 32—2¥72 = 1 and Theorem 1, we get x = 4 and

y=5. Then 2z2=3%*-2=49. This implies that z=7. That is (x,v,2)=(457).
|

Remark: By Theorem 15, {(1,1,1),(3,1,5),(14,1,2,187),(16,1,6,561)} are non-negative integer solutions of

the Diophantine equation 3* — 2¥ = 22,

Conclusions
In this article, we proved that the Diophantine equation 3* — p¥ = z2, where p is prime and x,y,z
are non-negative integers satisfying some conditions, has a unique non-negative integer solution (x,y,z) =
(0,0,0). For p = 2, this Diophantine equation has all non-negative integer solutions in the following form
(x,y,2) €{(0,0,0),(2,3,1), (4,5 7D}u{(r,1,V3" = 2):r,V/3" —2 € N}.
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