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บทคัดย่อ 

 ในงานวิจัยนี้ได้แสดงว่า (𝑥, 𝑦, 𝑧) = (0, 0, 0) เป็นผลเฉลยที่เป็นจ านวนเต็มที่ไม่เป็นลบเพียงผลเฉลยเดียวของสมการ  
ไดโอแฟนไทน์ 3𝑥 − 𝑝𝑦 = 𝑧2 เมื่อ 𝑝 เป็นจ านวนเฉพาะ และ 𝑥, 𝑦, 𝑧 เป็นจ านวนเต็มที่ไม่เป็นลบ โดยมีเงื่อนไขบางประการ และ
ส าหรับกรณี 𝑝 = 2 จะให้ผลเฉลยที่เป็นจ านวนเต็มที่ไม่เป็นลบทั้งหมดของสมการดังกล่าว 
ค าส าคัญ:  สมการไดโอแฟนไทน์ ทฤษฎีของมิเฮเลสคู ผลเฉลยที่เปน็จ านวนเต็มทีไ่ม่เป็นลบ  
 

Abstract 
 In this paper, we show that (𝑥, 𝑦, 𝑧) = (0, 0, 0) is a unique non-negative integer solution of the 
Diophantine equation 3𝑥 − 𝑝𝑦 = 𝑧2 where 𝑝 is prime and 𝑥, 𝑦, 𝑧 are non-negative integers satisfying some 
conditions. For the case 𝑝 = 2, we give all non-negative integer solutions of this equation. 
Keywords:  Diophantine equation, Mihailescu’s Theorem, Non-negative integer solution 
 
Introduction 
 Many mathematical researchers investigated the non-negative integer solutions (𝑥, 𝑦, 𝑧)of 
Diophantine equations in the form 𝑎𝑥 − 𝑏𝑦 = 𝑧2 where 𝑎 and 𝑏 are positive integers. In 2018, Rabago (2018) 
showed that the Diophantine equation 4𝑥 − 𝑝𝑦 = 𝑧2, where 𝑝 is prime, has the set of all non-negative integer 
solutions {(𝑥, 𝑦, 𝑧)} given by {(𝑥, 𝑦, 𝑧)} = {(0, 0, 0)} ∪ {(𝑞 − 1, 1, 2𝑞−1 − 1)}, for prime 𝑝 = 2𝑞 − 1 (with 𝑞 also 
a prime). For 𝑝 ≡ 3(mod 4) not of the form 2𝑞 − 1, the Diophantine equation 4𝑥 − 𝑝𝑦 = 𝑧2 has the only non-
negative integer solution (𝑥, 𝑦, 𝑧) = (0, 0, 0). After that, in 2019, Thongnak, Chuayjan and Kaewong (2019) 
proved that (𝑥, 𝑦, 𝑧) ∈ {(0, 0, 0), (1, 0, 1), (2, 1, 1)} are only three non-negative integer solutions of the 
Diophantine equation 2𝑥 − 3𝑦 = 𝑧2.  
 In 2020, Burshtein (2020) proved that the Diophantine equation 13𝑥 − 5𝑦 = 𝑧2 has a unique positive 
integer solution (𝑥, 𝑦, 𝑧) = (2, 2, 12) and the Diophantine equation 19𝑥 − 5𝑦 = 𝑧2 has no positive integer 
solution. Recently, Thongnak, Chuayjan and Kaewong (2021, 2022) proved that (𝑥, 𝑦, 𝑧) = (0, 0, 0) is the 
unique non-negative integer solution of the Diophantine equations 7𝑥 − 5𝑦 = 𝑧2 and 7𝑥 − 2𝑦 = 𝑧2. In 2022, 
Tadee (2022) found all positive integer solutions of the Diophantine equation 𝑝2𝑥 − 𝑞2𝑦 = 𝑧2 where 𝑝 and 𝑞 
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are primes. Furthermore, Tadee and Laomalaw (2022) studied non-negative integer solutions of the 
Diophantine equation  2𝑥 − 𝑝𝑦 = 𝑧2 where 𝑝 is prime. 
 In this paper, we study non-negative integer solutions of the Diophantine equation  3𝑥 − 𝑝𝑦 = 𝑧2 
where 𝑝 is prime and 𝑥, 𝑦, 𝑧 are non-negative integers with some conditions. 
 
Preliminaries  

In this section, we give some helpful Theorems and Lemmas for this study. 
Theorem 1. (Mihailescu’s Theorem) (Mihailescu, 2004) The Diophantine equation 𝑎𝑥 − 𝑏𝑦 = 1 has a unique 
integer solution (𝑎, 𝑏, 𝑥, 𝑦) = (3, 2, 2, 3) where 𝑎, 𝑏, 𝑥, 𝑦 are integers and min{𝑎, 𝑏, 𝑥, 𝑦} > 1. 
 
Theorem 2. (Tadee & Laomalaw, 2022) Let 𝑛 be a positive integer with 𝑛 ≠ 1. Then the Diophantine 
equation 𝑛𝑥 − 𝑛𝑦 = 𝑧2 has all non-negative integer solutions in the following form 
 

(𝑥, 𝑦, 𝑧) ∈ {(𝑟, 𝑟, 0), (1, 0, √𝑛 − 1), (𝑟 + 1, 𝑟, √(𝑛 − 1)𝑛𝑟)} ∩ ℤ3, 
 

where 𝑟 is a non-negative integer. 
By Theorem 2, we have the following corollary for case 𝑛 = 3. 
 
Corollary 3. The Diophantine equation 3𝑥 − 3𝑦 = 𝑧2 has all non-negative integer solutions in the following 
form (𝑥, 𝑦, 𝑧) ∈ {(𝑟, 𝑟, 0): 𝑟 ∈ ℕ ∪ {0}}. 
 
Lemma 4. Let 𝑝 be prime. Then the Diophantine equation 1 − 𝑝𝑦 = 𝑧2 has a unique non-negative integer 
solution (𝑦, 𝑧) = (0,0). 
Proof. Let 𝑦 and 𝑧 be non-negative integers such that 1 − 𝑝𝑦 = 𝑧2. Since 𝑧2 ≥ 0, we have 1 − 𝑝𝑦 ≥ 0. This 
implies that 𝑦 = 0 and 𝑧 = 0.                                                                                                                  
    
Lemma 5. The Diophantine equation 3𝑥 − 1 = 𝑧2 has a unique non-negative integer solution (𝑥, 𝑧) = (0,0). 
Proof. Let 𝑥 and 𝑧 be non-negative integers such that 3𝑥 − 1 = 𝑧2. If 𝑥 = 0, then 𝑧2 = 0. It follows that 
(𝑥, 𝑧) = (0,0). If  𝑥 = 1, then we have 𝑧2 = 2 which is impossible. Assume that 𝑥 > 1. We consider the 
following cases.  
Case 1. 𝑧 = 0. Then 3𝑥 = 1. We get 𝑥 = 0. This is impossible since 𝑥 > 1.  
Case 2. 𝑧 = 1. Then 3𝑥 = 2. This is impossible since 𝑥 is an integer.  
Case 3. 𝑧 > 1. Then min{3, 𝑧, 𝑥, 2} > 1. This is impossible since 3𝑥 − 𝑧2 = 1 and Theorem 1.                            
    
 
Lemma 6. Let 𝑝 be prime and 𝑥 be an even integer. If the Diophantine equation 3𝑥 − 𝑝𝑦 = 𝑧2 has a non-
negative integer solution, then there exists a non-negative integer 𝑢 such that 2 ∙ 3

𝑥

2 = 𝑝𝑢(𝑝𝑦−2𝑢 + 1). 
Proof. Let 𝑥, 𝑦 and 𝑧 be non-negative integers such that 3𝑥 − 𝑝𝑦 = 𝑧2. Since 𝑥 is an even integer, there exists 
a non-negative integer 𝑘 such that 𝑥 = 2𝑘. Then (3𝑘 − 𝑧)(3𝑘 + 𝑧) = 𝑝𝑦. Since 𝑝 is prime, there exists a non-
negative integer 𝑢 such that 3𝑘 − 𝑧 = 𝑝𝑢 and 3𝑘 + 𝑧 = 𝑝𝑦−𝑢. Thus, 𝑦 ≥ 2𝑢 and 2 ∙ 3𝑘 = 𝑝𝑢(𝑝𝑦−2𝑢 + 1).         
  
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Corollary 7.  Let 𝑝 ∉ {2, 3} be prime and 𝑥 be an even integer. Then all non-negative integer solutions of the 
Diophantine equation 3𝑥 − 𝑝𝑦 = 𝑧2 are 
 

(𝑥, 𝑦, 𝑧) ∈ {(2𝑘,  log𝑝(2 ∙ 3𝑘 − 1), 3𝑘 − 1): 𝑘,  log𝑝(2 ∙ 3𝑘 − 1) ∈ ℕ ∪ {0}}. 
 

Proof. Let 𝑥, 𝑦 and 𝑧 be non-negative integers such that 3𝑥 − 𝑝𝑦 = 𝑧2. Since 𝑥 is an even integer, there exists 
a non-negative integer 𝑘 such that 𝑥 = 2𝑘. By Lemma 6, there exists a non-negative integer 𝑢 such that 
2 ∙ 3𝑘 = 𝑝𝑢(𝑝𝑦−2𝑢 + 1). Since 𝑝 ∉ {2, 3} is prime, we obtain that 𝑢 = 0. Then 2 ∙ 3𝑘 = 𝑝𝑦 + 1. Thus, 
𝑦 =  log𝑝(2 ∙ 3𝑘 − 1) and 𝑧2 = 3𝑥 − 𝑝𝑦 = 32𝑘 − 2 ∙ 3𝑘 + 1 = (3𝑘 − 1)2. This implies that 𝑧 = 3𝑘 − 1. Then 
(𝑥, 𝑦, 𝑧) = (2𝑘,  log𝑝(2 ∙ 3𝑘 − 1), 3𝑘 − 1) where  log𝑝(2 ∙ 3𝑘 − 1) is a non-negative integer.                                                
 
 
Corollary 8.  The Diophantine equation 81𝑥 − 5𝑦 = 𝑧2 has a unique non-negative integer solution (𝑥, 𝑦, 𝑧) =

(0, 0, 0). 
Proof. Let 𝑥, 𝑦 and 𝑧 be non-negative integers such that 34𝑥 − 5𝑦 = 𝑧2. Assume that 𝑦 ≥ 1. Since 4𝑥 is an 
even integer and Lemma 6, there exists a non-negative integer 𝑢 such that 2 ∙ 9𝑥 = 5𝑢(5𝑦−2𝑢 + 1). Then 𝑢 =

0 and 2 ∙ 9𝑥 = 5𝑦 + 1. Since 5𝑦 + 1 ≡ 1(mod 5), we get 2 ∙ 9𝑥 ≡ 1(mod 5). This is impossible since 2 ∙ 9𝑥 ≡

2 ∙ (−1)𝑥 ≡ −2 or 2(mod 5). Thus, 𝑦 = 0. By Lemma 5, we have (𝑥, 𝑦, 𝑧) = (0, 0, 0).                                              
 
 
 
Main Results  

We now present our main results.  
Theorem 9. Let 𝑝 be prime with 𝑝 ≡ 1(mod 3). Then the Diophantine equation 3𝑥 − 𝑝𝑦 = 𝑧2 has a unique 
non-negative integer solution (𝑥, 𝑦, 𝑧) = (0, 0, 0). 
Proof. Let 𝑥, 𝑦 and 𝑧 be non-negative integers such that 3𝑥 − 𝑝𝑦 = 𝑧2. Assume that 𝑥 ≥ 1. Then 3𝑥 ≡

0(mod 3). Since 𝑝 ≡ 1(mod 3), we obtain that 3𝑥 − 𝑝𝑦 ≡ −1(mod 3). Then 𝑧2 ≡ −1(mod 3), which 
contradicts the fact that 𝑧2 ≡ 0 or 1(mod 3). Thus, 𝑥 = 0. By Lemma 4, we have (𝑥, 𝑦, 𝑧) = (0, 0, 0).              
 
 
Theorem 10. Let 𝑝 be prime with 𝑝 ≡ 2(mod 3) and 𝑦 be an even integer. Then the Diophantine equation 
3𝑥 − 𝑝𝑦 = 𝑧2 has a unique non-negative integer solution(𝑥, 𝑦, 𝑧) = (0, 0, 0). 
Proof. Let 𝑥, 𝑦 and 𝑧 be non-negative integers such that 3𝑥 − 𝑝𝑦 = 𝑧2.  If 𝑥 ≥ 1, then 3𝑥 ≡ 0(mod 3). Since 
𝑝 ≡ 2(mod 3) and 𝑦 is even, we get 3𝑥 − 𝑝𝑦 ≡ 0 − (−1)𝑦 ≡ −1(mod 3). This implies that 𝑧2 ≡ −1(mod 3), 
which contradicts the fact that 𝑧2 ≡ 0 or 1(mod 3). Thus 𝑥 = 0. By Lemma 4, we have (𝑥, 𝑦, 𝑧) = (0, 0, 0).     
   
 
Corollary 11. Let 𝑝 be prime with 𝑝 ≡ 29(mod 60). Then the Diophantine equation 3𝑥 − 𝑝𝑦 = 𝑧2 has a 
unique non-negative integer solution (𝑥, 𝑦, 𝑧) = (0, 0, 0). 
Proof. Let 𝑥, 𝑦 and 𝑧 be non-negative integers such that 3𝑥 − 𝑝𝑦 = 𝑧2. Since 𝑝 ≡ 29(mod 60), we have 𝑝 ≡

2(mod 3), 𝑝 ≡ 1(mod 4) and 𝑝 ≡ −1(mod 5). Assume that  𝑦 is odd. Since 𝑝 ≡ 1(mod 4), we get 𝑧2 = 3𝑥 −
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𝑝𝑦 ≡ (−1)𝑥 − 1(mod 4). Since 𝑝 is odd, we have 3𝑥 − 𝑝𝑦 is even. Thus, 𝑧 is also even. Then 𝑧2 ≡ 0(mod 4). 
This implies that (−1)𝑥 − 1 ≡ 0(mod 4). Then 𝑥 is even. By Lemma 6, there exists a non-negative integer 𝑢 
such that 2 ∙ 3

𝑥

2 = 𝑝𝑢(𝑝𝑦−2𝑢 + 1). Since 𝑝 is prime with 𝑝 ≡ 29(mod 60), we have 𝑢 = 0 and 2 ∙ 3
𝑥

2 = 𝑝𝑦 + 1. 
Since 𝑝 ≡ −1(mod 5) and 𝑦 is odd, we have 𝑝𝑦 + 1 ≡ 0(mod 5). Then 2 ∙ 3

𝑥

2 ≡ 0(mod 5). This is a 
contradiction. Thus, 𝑦 is even. Since 𝑝 ≡ 2(mod 3) and Theorem 10, we have (𝑥, 𝑦, 𝑧) = (0, 0, 0).                  
  
  
Theorem 12. Let 𝑝 be prime with 𝑝 ≡ 5(mod 12). If there exists a prime 𝑞 ∉ {2, 3} such that 𝑝 ≡ −1(mod 𝑞), 
then the Diophantine equation 3𝑥 − 𝑝𝑦 = 𝑧2 has a unique non-negative integer solution (𝑥, 𝑦, 𝑧) = (0, 0, 0). 
Proof. Let 𝑥, 𝑦 and 𝑧 be non-negative integers such that 3𝑥 − 𝑝𝑦 = 𝑧2. Since 𝑝 ≡ 5(mod 12), we have 𝑝 ≡

2(mod 3) and 𝑝 ≡ 1(mod 4). Assume that 𝑦 is odd. Since 𝑝 ≡ 1(mod 4), we have 𝑧2 = 3𝑥 − 𝑝𝑦 ≡ (−1)𝑥 −

1(mod 4). Since 𝑝 is odd, we obtain that 3𝑥 − 𝑝𝑦 is even. Thus, 𝑧 is even and 𝑧2 ≡ 0(mod 4). It follows that 
(−1)𝑥 − 1 ≡ 0(mod 4). Then 𝑥 is even. By Lemma 6, there exists a non-negative integer 𝑢 such that 2 ∙ 3

𝑥

2 =

𝑝𝑢(𝑝𝑦−2𝑢 + 1). Since 𝑝 is prime with 𝑝 ≡ 5(mod 12), we get 𝑢 = 0 and 2 ∙ 3
𝑥

2 = 𝑝𝑦 + 1. Since 𝑝 ≡ −1(mod 𝑞) 
and 𝑦 is odd, we have 𝑝𝑦 + 1 ≡ 0(mod 𝑞). Thus, 2 ∙ 3

𝑥

2 ≡ 0(mod 𝑞). This is impossible since 𝑞 ∉ {2, 3} is 
prime. Thus, 𝑦 is even. Since 𝑝 ≡ 2(mod 3) and Theorem 10, we get (𝑥, 𝑦, 𝑧) = (0, 0, 0).                                                    
 
 
Corollary 13. The Diophantine equation 3𝑥 − 41𝑦 = 𝑧2 has a unique non-negative integer solution (𝑥, 𝑦, 𝑧) =

(0, 0, 0). 
Proof. Since 41 is prime, 41 ≡ 5(mod 12) and 41 ≡ −1(mod 7), we obtain that the Diophantine equation 
3𝑥 − 41𝑦 = 𝑧2 has a unique non-negative integer solution (𝑥, 𝑦, 𝑧) = (0, 0, 0), by Theorem 12.                     
 
 
Theorem 14. Let 𝑝 be prime with 𝑝 ≡ 11(mod 12) and 𝑥 be an even integer. Then the Diophantine equation 
3𝑥 − 𝑝𝑦 = 𝑧2 has a unique non-negative integer solution (𝑥, 𝑦, 𝑧) = (0, 0, 0). 
Proof. Let 𝑥, 𝑦 and 𝑧 be non-negative integers such that 3𝑥 − 𝑝𝑦 = 𝑧2. Since 𝑥 is even and Lemma 6, there 
exists a non-negative integer 𝑢 such that 2 ∙ 3

𝑥

2 = 𝑝𝑢(𝑝𝑦−2𝑢 + 1). Since 𝑝 is prime with 𝑝 ≡ 11(mod 12), we 
get 𝑢 = 0 and 2 ∙ 3

𝑥

2 = 𝑝𝑦 + 1. Since 𝑝 ≡ −1(mod 4), we have 𝑝𝑦 + 1 ≡ (−1)𝑦 + 1(mod 4). Since 3 ≡

−1(mod 4), we have  2 ∙ 3
𝑥

2 ≡ 2(−1)𝑥 ≡ −2 or 2(mod 4). Thus, (−1)𝑦 + 1 ≡ −2 or 2(mod 4). Then 𝑦 is 
even. Since 𝑝 ≡ 2(mod 3) and Theorem 10, we get (𝑥, 𝑦, 𝑧) = (0, 0, 0).                                                                          
 
 
Theorem 15. The Diophantine equation 3𝑥 − 2𝑦 = 𝑧2 has all non-negative integer solutions in the following 
form (𝑥, 𝑦, 𝑧) ∈ {(0, 0, 0), (2, 3, 1), (4, 5, 7)} ∪ {(𝑟, 1, √3𝑟 − 2): 𝑟, √3𝑟 − 2 ∈ ℕ}. 
Proof. Let 𝑥, 𝑦 and 𝑧 be non-negative integers such that 3𝑥 − 2𝑦 = 𝑧2. If 𝑦 = 0, then by Lemma 5, we have 
(𝑥, 𝑦, 𝑧) = (0, 0, 0). If 𝑦 = 1, then 𝑧 = √3𝑥 − 2. This implies that (𝑥, 𝑦, 𝑧) ∈ {(𝑟, 1, √3𝑟 − 2): 𝑟, √3𝑟 − 2 ∈ ℕ}. If 
𝑦 > 1, then we get 𝑥 > 1 and 3𝑥 − 2𝑦 ≡ (−1)𝑥(mod 4). Thus, 𝑧2 ≡ (−1)𝑥(mod 4). Since 3𝑥 − 2𝑦 is odd, we 
have 𝑧2 is also odd. Then 𝑧2 ≡ 1(mod 4). Thus, (−1)𝑥 ≡ 1(mod 4). Then 𝑥 is even. By Lemma 6, there exists 
a non-negative integer 𝑢 such that 2 ∙ 3

𝑥

2 = 2𝑢(2𝑦−2𝑢 + 1). Then 𝑢 = 1 and 3
𝑥

2 = 2𝑦−2 + 1.  
Case 1. 𝑥 = 2. Then 2𝑦−2 = 2. Thus, 𝑦 = 3 and 𝑧 = 1. That is (𝑥, 𝑦, 𝑧) = (2, 3, 1). 
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Case 2. 𝑥 ≥ 4. If 𝑦 = 2, then 3
𝑥

2 = 2. This is impossible. If 𝑦 = 3, then 3
𝑥

2 = 3 and 𝑥 = 2. This is also 
impossible. Thus, 𝑦 ≥ 4. Then min {3, 2,

𝑥

2
, 𝑦 − 2} > 1. Since 3

𝑥

2−2𝑦−2 = 1 and Theorem 1, we get 𝑥 = 4 and 
𝑦 = 5. Then 𝑧2 = 34 − 25 = 49. This implies that 𝑧 = 7. That is (𝑥, 𝑦, 𝑧) = (4, 5, 7).                                                                  
 
 
Remark: By Theorem 15, {(1, 1, 1), (3, 1, 5) , (14, 1, 2,187), (16, 1, 6,561)} are non-negative integer solutions of 
the Diophantine equation 3𝑥 − 2𝑦 = 𝑧2. 
 
 
Conclusions 
 In this article, we proved that the Diophantine equation 3𝑥 − 𝑝𝑦 = 𝑧2, where 𝑝 is prime and 𝑥, 𝑦, 𝑧 
are non-negative integers satisfying some conditions, has a unique non-negative integer solution (𝑥, 𝑦, 𝑧) =

(0, 0, 0). For 𝑝 = 2, this Diophantine equation has all non-negative integer solutions in the following form  
(𝑥, 𝑦, 𝑧) ∈ {(0, 0, 0), (2, 3, 1), (4, 5, 7)} ∪ {(𝑟, 1, √3𝑟 − 2): 𝑟, √3𝑟 − 2 ∈ ℕ}. 
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